Codeforces 711D Directed Roads

链接

传送门

题意

给出\(n\)个点,每个点都有一条弧连接着一个其他的点,对于给出的弧,可以选一部分进行反转使得图中没有环,输出操作的方法数对\(10^9+7\)取模后的值。

思路

易得,弧的方向对结果不产生影响,将弧转为无向边考虑。显然,对于任意连通分量都至多有一个环。每个环的反转方式为\(2^e-2\),不在环中的每条边的反转状态任意。最终的结果为\(2^{n-\sum e} \prod {\left(2^e-2\right)}\)

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>

using namespace std;

typedef long long LL;

const LL mod = 1000000007;
const int maxn = 200005;

int p[maxn], a[maxn], d[maxn];
bool vis[maxn];
vector<int> g[maxn];
queue<int> q;

int Find(int x) {
return x == p[x] ? x : p[x] = Find(p[x]);
}

LL fexp(LL x, LL k) {
LL res = 1, cur = x;
while (k) {
if (k & 1) {
res = res * cur % mod;
}
cur = cur * cur % mod;
k >>= 1;
}
return res;
}

int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
p[i] = i;
scanf("%d", &a[i]);
}
int m = 0;
LL ans = 1;
for (int i = 1; i <= n; ++i) {
int fu = Find(i), fv = Find(a[i]);
if (fu != fv) {
p[fu] = fv;
g[i].push_back(a[i]);
g[a[i]].push_back(i);
} else {
q.push(i);
vis[i] = true;
d[i] = 1;
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v: g[u]) {
if (!vis[v]) {
vis[v] = true;
d[v] = d[u] + 1;
q.push(v);
}
}
}
m += d[a[i]];
ans = ans * (fexp(2, d[a[i]]) - 2) % mod;
}
}
printf("%d\n", int(ans * fexp(2, n - m) % mod));
return 0;
}