链接
传送门
题意
给出一个字符串,输出它的最长回文子串。
思路
将原字符串反转后求LCS,保留字典序最小的LCS。由求出的LCS字典序最小,因而无法保证回文,比如:\(cbcabcb\)、\(bcbacbc\)求出的LCS为\(bcabc\),而最长回文子串\(bcacb\)由于字典序比\(bcabc\)大被替换掉了。因此要取LCS前半部分构造出回文子串。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| #include <cstdio> #include <cstring> #include <algorithm> #include <string> using namespace std;
const int maxn = 1010; char s1[maxn], s2[maxn]; struct node { int len; string s; bool operator < (const node& rhs) const { return len > rhs.len || (len == rhs.len && s < rhs.s); } } d[maxn][maxn];
int main() { while (~scanf("%s", s1 + 1)) { int len = int(strlen(s1 + 1)); for (int i = 1; i <= len; ++i) { s2[i] = s1[len - i + 1]; } s2[len + 1] = 0; for (int i = 0; i <= len; i++) { d[0][i].len = 0, d[0][i].s = ""; } for (int i = 1; i <= len; ++i) { for (int j = 1; j <= len; ++j) { if (s1[i] == s2[j]) { d[i][j].len = d[i - 1][j - 1].len + 1; d[i][j].s = d[i - 1][j - 1].s + s1[i]; } else { d[i][j] = min(d[i][j - 1], d[i - 1][j]); } } } node& k = d[len][len]; len = k.len >> 1; for (int i = 0; i < len; ++i) { putchar(k.s[i]); } if (k.len & 1) { putchar(k.s[len]); } for (int i = len - 1; i >= 0; --i) { putchar(k.s[i]); } puts(""); } return 0; }
|